All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Number of Rich Words

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316065" target="_blank" >RIV/68407700:21340/17:00316065 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-62809-7_26" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-62809-7_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-62809-7_26" target="_blank" >10.1007/978-3-319-62809-7_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Number of Rich Words

  • Original language description

    Any finite word $w$ of length $n$ contains at most $n+1$ distinct palindromic factors. If the bound $n+1$ is reached, the word $w$ is called rich. The number of rich words of length $n$ over an alphabet of cardinality $q$ is denoted $R_q(n)$. For binary alphabet, Rubinchik and Shur deduced that ${R_2(n)}leq c 1.605^n $ for some constant $c$. In addition, Guo, Shallit and Shur conjectured that the number of rich words grows slightly slower than $n^{sqrt{n}}$. We prove that $limlimits_{nrightarrow infty }sqrt[n]{R_q(n)}=1$ for any $q$, i.e. $R_q(n)$ has a subexponential growth on any alphabet.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA13-03538S" target="_blank" >GA13-03538S: Algorithms, Dynamics and Geometry of Numeration systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Developments in Language Theory

  • ISBN

    978-3-319-62809-7

  • ISSN

    1611-3349

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    345-352

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Liège, Belgium

  • Event date

    Aug 7, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article