All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rich Words Containing Two Given Factors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335008" target="_blank" >RIV/68407700:21340/19:00335008 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-28796-2_23" target="_blank" >http://dx.doi.org/10.1007/978-3-030-28796-2_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-28796-2_23" target="_blank" >10.1007/978-3-030-28796-2_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rich Words Containing Two Given Factors

  • Original language description

    A finite word $w$ with $vert wvert=n$ contains at most $n+1$ distinct palindromic factors. If the bound $n+1$ is attained, the word $w$ is called emph{rich}. Let $F(w)$ be the set of factors of the word $w$. It is known that there are pairs of rich words that cannot be factors of a same rich word. However it is an open question how to decide for a given pair of rich words $u,v$ if there is a rich word $w$ such that ${u,v}subseteq F(w)$. We present a response to this open question: If $w_1, w_2,w$ are rich words, $m=max{{vert w_1vert,vert w_2vert}}$, and ${w_1,w_2}subseteq F(w)$ then there exists also a rich word $bar w$ such that ${w_1,w_2}subseteq F(bar w)$ and $vert bar wvertleq m2^{k(m)+2}$, where $k(m)=(q+1)m^2(4q^{10}m)^{log_2{m}}$ and $q$ is the size of the alphabet. Hence it is enough to check all rich words of length equal or lower to $m2^{k(m)+2}$ in order to decide if there is a rich word containing factors $w_1,w_2$.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Combinatorics on Words. WORDS 2019.

  • ISBN

    978-3-030-28795-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    286-298

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Loughborough

  • Event date

    Sep 9, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article