All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Upper bound for palindromic and factor complexity of rich words

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00347627" target="_blank" >RIV/68407700:21340/21:00347627 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/ita/2020008" target="_blank" >https://doi.org/10.1051/ita/2020008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/ita/2020008" target="_blank" >10.1051/ita/2020008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Upper bound for palindromic and factor complexity of rich words

  • Original language description

    A finite word $w$ of length $n$ contains at most $n+1$ distinct palindromic factors. If the bound $n+1$ is attained, the word $w$ is called rich. An infinite word $w$ is called rich if every finite factor of $w$ is rich. Let $w$ be a word (finite or infinite) over an alphabet with $q>1$ letters, let $fac_w(n)$ be the set of factors of length $n$ of the word $w$, and let $pf_w(n)subseteq fac_w(n)$ be the set of palindromic factors of length $n$ of the word $w$. We present several upper bounds for $vert fac_w(n)vert$ and $vert pf_w(n)vert$, where $w$ is a rich word. Let $delta=frac{3}{2(ln{3}-ln{2})}$. In particular we show that [vert fac_w(n)vert leq (4q^{2}n)^{deltaln{2n}+2}mbox{.}] In 2007, Bal{'a}{v z}i, Mas{'a}kov{'a}, and Pelantov{'a} showed that [vert pf_w(n)vert +vert pf_w(n+1)vert leq vert fac_w(n+1)vert-vert fac_w(n)vert+2mbox{,}] where $w$ is an infinite word whose set of factors is closed under reversal. We prove this inequality for every finite word $v$ with $vert vvertgeq n+1$ and $fac_v(n+1)$ closed under reversal.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RAIRO - Theoretical Informatics and Applications

  • ISSN

    0988-3754

  • e-ISSN

    1290-385X

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    55

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000609008300001

  • EID of the result in the Scopus database

    2-s2.0-85099791551