Languages invariant under more symmetries: overlapping factors versus palindromic richness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00186784" target="_blank" >RIV/68407700:21340/13:00186784 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/13:00186784
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2013.07.002" target="_blank" >http://dx.doi.org/10.1016/j.disc.2013.07.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2013.07.002" target="_blank" >10.1016/j.disc.2013.07.002</a>
Alternative languages
Result language
angličtina
Original language name
Languages invariant under more symmetries: overlapping factors versus palindromic richness
Original language description
Factor complexity $mathcal{C}$ and palindromic complexity $mathcal{P}$ of infinite words with language closed under reversal are known to be related by the inequality $mathcal{P}(n) + mathcal{P}(n+1) leq 2 + mathcal{C}(n+1)-mathcal{C}(n)$ for any $nin mathbb{N}$,. Words for which the equality is attained for any $n$ are usually called rich in palindromes. We show that rich words contain infinitely many overlapping factors. We study words whose languages are invariant under a finite group $G$ of symmetries. For such words we prove a stronger version of the above inequality. We introduce the notion of $G$-palindromic richness and give several examples of $G$-rich words, including the Thue-Morse sequence as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
313
Issue of the periodical within the volume
21
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
2432-2445
UT code for WoS article
000324442200007
EID of the result in the Scopus database
—