All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Palindromic complexity of infinite words associated to simple Parry numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F06%3A00130589" target="_blank" >RIV/68407700:21340/06:00130589 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Palindromic complexity of infinite words associated to simple Parry numbers

  • Original language description

    A simple Parry number is a real number $beta>1$ such that the R'enyi expansion of $1$ is finite, of the form $d_beta(1)=t_1 cdots t_m$. We study the palindromic structure of infinite aperiodic words $u_beta$ that are the fixed point of a substitution associated with a simple Parry number $beta$. It is shown that the word $u_beta$ contains infinitely many palindromes if and only if $t_1=t_2= cdots=t_{m-1}ge t_m$. Numbers $beta$ satisfying this condition are the so-called {em confluent} Pisot numbers. If $t_m=1$ then $u_beta$ is an Arnoux-Rauzy word. We show that if $beta$ is a confluent Pisot number then $ {mathcal P}(n+1)+ {mathcal P}(n) = {mathcal C}(n+1) - {mathcal C}(n) +2$, where ${mathcal P}(n)$ is the number of palindromes and ${mathcal C}(n)$ is the number of factors of length $n$ in $u_beta$. We then give a complete description of the set of palindromes, its structure and properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annales de l'Institut Fourier

  • ISSN

    0373-0956

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    30

  • Pages from-to

  • UT code for WoS article

    000246794600005

  • EID of the result in the Scopus database