Complexity of infinite words associated with beta-expansion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F04%3A04105324" target="_blank" >RIV/68407700:21340/04:04105324 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Complexity of infinite words associated with beta-expansion
Original language description
We study the complexity of the infinite word $u_beta$ associated with the R'enyi expansion of $1$ in an irrational base $beta>1$. When $beta$ is the golden ratio, this is the well known Fibonacci word, which is Sturmian, and of complexity $C(n)=n+1$. For $beta$ such that $d_beta(1)=t_1t_2cdots t_{m}$ is finite we provide a simple description of the structure of special factors of the word $u_beta$. When $t_m=1$ we show that $C(n)=(m-1)n+1$. In the cases when $t_1=t_2=cdots=t_{m-1}$ or $t_1>max{t_2,dots,t_{m-1}}$ we show that the first difference of the complexity function $C(n+1)-C(n)$ takes value in ${m-1,m}$ for every $n$, and consequently we determine the complexity of $u_beta$. We show that $u_beta$ is an Arnoux-Rauzy sequenceif and only if $d_beta(1)=t,tcdots,t,1$. On the example of $beta=1+2cos(2pi/7)$, solution of $X^3=2X^2+X-1$, we illustrate that the structure of special factors is more complicated for $d_beta(1)$ infinite even
Czech name
Complexity of infinite words associated with beta-expansion
Czech description
We study the complexity of the infinite word $u_beta$ associated with the R'enyi expansion of $1$ in an irrational base $beta>1$. When $beta$ is the golden ratio, this is the well known Fibonacci word, which is Sturmian, and of complexity $C(n)=n+1$. For $beta$ such that $d_beta(1)=t_1t_2cdots t_{m}$ is finite we provide a simple description of the structure of special factors of the word $u_beta$. When $t_m=1$ we show that $C(n)=(m-1)n+1$. In the cases when $t_1=t_2=cdots=t_{m-1}$ or $t_1>max{t_2,dots,t_{m-1}}$ we show that the first difference of the complexity function $C(n+1)-C(n)$ takes value in ${m-1,m}$ for every $n$, and consequently we determine the complexity of $u_beta$. We show that $u_beta$ is an Arnoux-Rauzy sequenceif and only if $d_beta(1)=t,tcdots,t,1$. On the example of $beta=1+2cos(2pi/7)$, solution of $X^3=2X^2+X-1$, we illustrate that the structure of special factors is more complicated for $d_beta(1)$ infinite even
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F01%2F0130" target="_blank" >GA201/01/0130: Some aspects of quantum group and self-similar aperiodic structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
ISSN
0764-583X
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
2
Country of publishing house
FR - FRANCE
Number of pages
23
Pages from-to
162-184
UT code for WoS article
—
EID of the result in the Scopus database
—