All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F07%3A04137464" target="_blank" >RIV/68407700:21340/07:04137464 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers

  • Original language description

    We study some arithmetical and combinatorial properties of $beta$-integers for $beta$ being the larger root of the equation $x^2=mx-n, m,n in mathbb N, m geq n+2geq 3$. We determine with the accuracy of $pm 1$ the maximal number of $beta$-fractional positions, which may arise as a~result of addition of two $beta$-integers. For the infinite word $u_beta$ coding distances between the consecutive $beta$-integers, we determine precisely also the balance. The word $u_beta$ is the only fixed pointof the morphism $A to A^{m-1}B$ and $Bto A^{m-n-1}B$. In the case $n=1$, the corresponding infinite word $u_beta$ is sturmian, and, therefore, $1$-balanced. On the simplest non-sturmian example with $ngeq 2$, we illustrate how closely the balance and the arithmetical properties of $beta$-integers are related.

  • Czech name

    Kombinatorické a aritmetické vlastnosti nekonečných slov spojených s nejednoduchými kvadratickými Parryho čísly.

  • Czech description

    Studujeme některé aritmetické a kombinatorické vlastnosti beta celých čísel v případech, kdy beta je větší z kořenů kvadratické rovnice $x^2=mx-n, m,n in mathbb N, m geq n+2geq 3$. Určujeme s přesností na $pm 1$ maximální délku zlomkové části, kterámůže vzniknout součtem dvou beta celých čísel. Pro nekonečné slovo $u_beta$, které kóduje mezery mezi beta celými čísly, určujeme přesně hodnotu balance. Slovo $u_beta$ je jediným pevným slovem morfizmu $A to A^{m-1}B$ and $Bto A^{m-n-1}B$.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F05%2F0169" target="_blank" >GA201/05/0169: Algebraic and combinatorial aspects of aperiodic structures</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RAIRO - Theoretical Informatics and Applications

  • ISSN

    0988-3754

  • e-ISSN

  • Volume of the periodical

    2007

  • Issue of the periodical within the volume

    41

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    22

  • Pages from-to

    307-328

  • UT code for WoS article

  • EID of the result in the Scopus database