All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Upper bound for the number of closed and privileged words

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00345707" target="_blank" >RIV/68407700:21340/20:00345707 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ipl.2020.105917" target="_blank" >https://doi.org/10.1016/j.ipl.2020.105917</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ipl.2020.105917" target="_blank" >10.1016/j.ipl.2020.105917</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Upper bound for the number of closed and privileged words

  • Original language description

    A non-empty word w is a border of the word u if |w|<|u| and w is both a prefix and a suffix of u. A word u with the border w is closed if u has exactly two occurrences of w. A word u is privileged if |u|<2 or if u contains a privileged border w that appears exactly twice in u. Peltomäki (2016) presented the following open problem: “Give a nontrivial upper bound for B(n)”, where B(n) denotes the number of privileged words of length n. Let D(n) denote the number of closed words of length n. Let q>1 be the size of the alphabet. We show that there is a positive real constant c such that D(n) <= (c.ln(n).q^n)/(sqrt(n)), where n>1. Privileged words are a subset of closed words, hence we show also an upper bound for the number of privileged words.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information Processing Letters

  • ISSN

    0020-0190

  • e-ISSN

    1872-6119

  • Volume of the periodical

    156

  • Issue of the periodical within the volume

    April

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

    000514752400006

  • EID of the result in the Scopus database

    2-s2.0-85078571909