All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Upper bound for the number of privileged words

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00361404" target="_blank" >RIV/68407700:21340/23:00361404 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.disc.2022.113164" target="_blank" >https://doi.org/10.1016/j.disc.2022.113164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2022.113164" target="_blank" >10.1016/j.disc.2022.113164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Upper bound for the number of privileged words

  • Original language description

    A non-empty word w is a border of a word u if |w| < |u| and w is both a prefix and a suffix of u. A word u is privileged if |u| <= 1 or if u has a privileged border w that appears exactly twice in u. Peltomaki (2016) presented the following open problem: "Give a nontrivial upper bound for B(n)", where B(n) denotes the number of privileged words of length n. Let ln([0])(n) = n and let ln([j])(n) = ln(ln([j-1])(n)), where j, n are positive integers. We show that if q > 1 is a size of the alphabet and j >= 3 is an integer then there are constants a_j and n_j such that B(n) <= a_j q(n)root(ln n)/root(n)*In[j](n) Product_(i=2)^(j-1) root(ln[i](n)), where n >= n_j. This result improves the upper bound of Rukavicka (2020).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

    1872-681X

  • Volume of the periodical

    346

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

    000864094300007

  • EID of the result in the Scopus database

    2-s2.0-85137302645