All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Easy criteria to determine if a prime divides certain second-order recurrences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00389744" target="_blank" >RIV/67985840:_____/13:00389744 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Easy criteria to determine if a prime divides certain second-order recurrences

  • Original language description

    Let F(a, b) denote the set of all second-order recurrences w(a, b) satisfying the recursion relation wn+2 = awn+1 + bwn, where the discriminant D = a2+4b and a, b,w0, and w1 are all integers. Let u(a, b) denote the recurrence with initial terms u0 = 0 and u1 = 1. We say that the prime p is a divisor of w(a, b) if p | wn for some integer n >= 0. Let z(p) denote the least positive integer n such that un = 0 (mod p). Then z(p) | p (D/p), where (D/p) denotes the Legendre symbol. Define the index i(p) as i(p) = p (D/p) z(p). When i(p) = 1 or 2, we will find easy criteria to determine exactly when p is a divisor of w(a, b) based on the residue class or quadratic character of w2 1 aw1w0 bw2 0 modulo p. This generalizes results of Vandervelde when a = b = 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fibonacci Quarterly

  • ISSN

    0015-0517

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    3-12

  • UT code for WoS article

  • EID of the result in the Scopus database