Easy criteria to determine if a prime divides certain second-order recurrences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00389744" target="_blank" >RIV/67985840:_____/13:00389744 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Easy criteria to determine if a prime divides certain second-order recurrences
Original language description
Let F(a, b) denote the set of all second-order recurrences w(a, b) satisfying the recursion relation wn+2 = awn+1 + bwn, where the discriminant D = a2+4b and a, b,w0, and w1 are all integers. Let u(a, b) denote the recurrence with initial terms u0 = 0 and u1 = 1. We say that the prime p is a divisor of w(a, b) if p | wn for some integer n >= 0. Let z(p) denote the least positive integer n such that un = 0 (mod p). Then z(p) | p (D/p), where (D/p) denotes the Legendre symbol. Define the index i(p) as i(p) = p (D/p) z(p). When i(p) = 1 or 2, we will find easy criteria to determine exactly when p is a divisor of w(a, b) based on the residue class or quadratic character of w2 1 aw1w0 bw2 0 modulo p. This generalizes results of Vandervelde when a = b = 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
3-12
UT code for WoS article
—
EID of the result in the Scopus database
—