Second-order linear recurrences having arbitrarily large defect modulo p
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542416" target="_blank" >RIV/67985840:_____/21:00542416 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0319826" target="_blank" >http://hdl.handle.net/11104/0319826</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Second-order linear recurrences having arbitrarily large defect modulo p
Original language description
Let (w) = w(a, b) denote the second-order linear recurrence satisfying wn+2 =awn+1 +bwn, where w0, w1, and a are integers, b = 1, and D = a2 +4b is the discriminant. We distinguish the Lucas sequences u(a, b) and v(a, b) with initial terms u0 = 0, u1 = 1, and v0 = 2, v1 = a, respectively. Let p be a prime. Given the recurrence w(a, b), let w(p), called the defect of w(a, b) modulo p, denote the number of residues not appearing in (w) modulo p. It is known that for the recurrence w(a, 1), w(p) 1 if p > 7 and p - D. Given the xed recurrence w(a, 1), where w(a, 1) = u(a, 1) or v(a, 1), we will show that limp!1 w(p) = 1. Further, given the arbitrary recurrence w(a,????1), we will demonstrate that limp!1 w(p) = 1 and limp!1 w(p)=p 1 2. We will also prove that for the arbitrary recurrence w(a, 1), we have that lim supp!1 w(p)=p = 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
108-131
UT code for WoS article
000652052900002
EID of the result in the Scopus database
2-s2.0-85114135406