All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Second-order linear recurrences having arbitrarily large defect modulo p

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542416" target="_blank" >RIV/67985840:_____/21:00542416 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0319826" target="_blank" >http://hdl.handle.net/11104/0319826</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Second-order linear recurrences having arbitrarily large defect modulo p

  • Original language description

    Let (w) = w(a, b) denote the second-order linear recurrence satisfying wn+2 =awn+1 +bwn, where w0, w1, and a are integers, b = 1, and D = a2 +4b is the discriminant. We distinguish the Lucas sequences u(a, b) and v(a, b) with initial terms u0 = 0, u1 = 1, and v0 = 2, v1 = a, respectively. Let p be a prime. Given the recurrence w(a, b), let w(p), called the defect of w(a, b) modulo p, denote the number of residues not appearing in (w) modulo p. It is known that for the recurrence w(a, 1), w(p) 1 if p > 7 and p - D. Given the xed recurrence w(a, 1), where w(a, 1) = u(a, 1) or v(a, 1), we will show that limp!1 w(p) = 1. Further, given the arbitrary recurrence w(a,????1), we will demonstrate that limp!1 w(p) = 1 and limp!1 w(p)=p 1 2. We will also prove that for the arbitrary recurrence w(a, 1), we have that lim supp!1 w(p)=p = 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fibonacci Quarterly

  • ISSN

    0015-0517

  • e-ISSN

  • Volume of the periodical

    59

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    108-131

  • UT code for WoS article

    000652052900002

  • EID of the result in the Scopus database

    2-s2.0-85114135406