Identically distributed second-order linear recurrences modulo p
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00450652" target="_blank" >RIV/67985840:_____/15:00450652 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Identically distributed second-order linear recurrences modulo p
Original language description
Let w(a,1) denote the second-order linear recurrence satisfying the recursion relation wn+2 = awn+1 wn, where a and the initial terms w0, w1 are all integers. Let p be an odd prime. The restricted period hw(p) of w(a,1) modulo p is the least positive integer r such that wn+r Mwn (mod p) for all n 0 and some nonzero residue M modulo p. We distinguish two recurrences, the Lucas sequence of the first kind u(a,1) and the Lucas sequence of the second kind v(a,1), satisfying the above recursion relation and having initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a, respectively. We show that if u(a1,1) and u(a2,1) both have the same restricted period modulo p, or equivalently, the same period modulo p, then u(a1,1) and u(a2,1) have the same distribution of residues modulo p. Similar results are obtained for Lucas sequences of the second kind.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
290-312
UT code for WoS article
—
EID of the result in the Scopus database
—