All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fixed points and upper bounds for the rank of appearance in Lucas sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00398454" target="_blank" >RIV/67985840:_____/13:00398454 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fixed points and upper bounds for the rank of appearance in Lucas sequences

  • Original language description

    Let U(P,Q) denote the Lucas sequence satisfying the recursion relation Un+2 = PUn+1 QUn, where U0 = 0, U1 = 1, and P and Q are integers. Let z(n), called the rank of appearance of n in U(P,Q), denote the least positive integer m such that Um 0 (mod n). We find all fixed points n for the rank of appearance such that z(n) = n. We also show that z(n) 2n when z(n) exists. This paper improves results considered by Diego Marques regarding the Fibonacci sequence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fibonacci Quarterly

  • ISSN

    0015-0517

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    291-306

  • UT code for WoS article

  • EID of the result in the Scopus database