Fixed points and upper bounds for the rank of appearance in Lucas sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00398454" target="_blank" >RIV/67985840:_____/13:00398454 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fixed points and upper bounds for the rank of appearance in Lucas sequences
Original language description
Let U(P,Q) denote the Lucas sequence satisfying the recursion relation Un+2 = PUn+1 QUn, where U0 = 0, U1 = 1, and P and Q are integers. Let z(n), called the rank of appearance of n in U(P,Q), denote the least positive integer m such that Um 0 (mod n). We find all fixed points n for the rank of appearance such that z(n) = n. We also show that z(n) 2n when z(n) exists. This paper improves results considered by Diego Marques regarding the Fibonacci sequence.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
291-306
UT code for WoS article
—
EID of the result in the Scopus database
—