Functions of rational Krylov space matrices and their decay properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438332" target="_blank" >RIV/00216208:11320/21:10438332 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pF_fLjsGbW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pF_fLjsGbW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-021-01198-4" target="_blank" >10.1007/s00211-021-01198-4</a>
Alternative languages
Result language
angličtina
Original language name
Functions of rational Krylov space matrices and their decay properties
Original language description
Rational Krylov subspaces have become a fundamental ingredient in numerical linear algebra methods associated with reduction strategies. Nonetheless, many structural properties of the reduced matrices in these subspaces are not fully understood. We advance in this analysis by deriving bounds on the entries of rational Krylov reduced matrices and of their functions, that ensure an a-priori decay of their entries as we move away from the main diagonal. As opposed to other decay pattern results in the literature, these properties hold in spite of the lack of any banded structure in the considered matrices. Numerical experiments illustrate the quality of our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Volume of the periodical
148
Issue of the periodical within the volume
květen
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
99-126
UT code for WoS article
000637641800001
EID of the result in the Scopus database
2-s2.0-85103912746