TERES: Tail Event Risk Expectile Shortfall
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438367" target="_blank" >RIV/00216208:11320/21:10438367 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=l9ln6cWZ-C" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=l9ln6cWZ-C</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14697688.2020.1786151" target="_blank" >10.1080/14697688.2020.1786151</a>
Alternative languages
Result language
angličtina
Original language name
TERES: Tail Event Risk Expectile Shortfall
Original language description
We propose a generalized risk measure for expectile-based expected shortfall estimation. The generalization is designed with a mixture of Gaussian and Laplace densities. Our plug-in estimator is derived from an analytic relationship between expectiles and expected shortfall. We investigate the sensitivity and robustness of the expected shortfall to the underlying mixture parameter specification and the risk level. Empirical results from the US, German and UK stock markets and for selected NASDAQ blue chip companies indicate that expected shortfall can be successfully estimated using the proposed method on a monthly, weekly, daily and intra-day basis using a 1-year or 1-day time horizon across different risk levels.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quantitative Finance
ISSN
1469-7688
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
449-460
UT code for WoS article
000574955900001
EID of the result in the Scopus database
2-s2.0-85092191220