Lower order terms for the one-level density of a sympletic family of Hecke L-functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438408" target="_blank" >RIV/00216208:11320/21:10438408 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V4eZV2as8-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V4eZV2as8-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2020.11.022" target="_blank" >10.1016/j.jnt.2020.11.022</a>
Alternative languages
Result language
angličtina
Original language name
Lower order terms for the one-level density of a sympletic family of Hecke L-functions
Original language description
In this paper we apply the $L$-function Ratios Conjecture to compute the one-level density for a symplectic family of $L$-functions attached to Hecke characters of infinite order. When the support of the Fourier transform of the corresponding test function $f$ reaches $1$, we observe a transition in the main term, as well as in the lower order term. The transition in the lower order term is in line with behavior recently observed by D. Fiorilli, J. Parks, and A. Södergren in their study of a symplectic family of quadratic Dirichlet $L$-functions. We then directly calculate main and lower order terms for test functions $f$ such that supp($widehat{f}) subset [-alpha,alpha]$ for some $alpha <1$, and observe that this unconditional result is in agreement with the prediction provided by the Ratios Conjecture. As the analytic conductor of these L-functions grow twice as large (on a logarithmic scale) as the cardinality of the family in question, this is the optimal support that can be expected with current methods. Finally as a corollary we deduce that, under GRH, at least 75$%$ of these $L$-functions do not vanish at the central point.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Number Theory
ISSN
0022-314X
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
221
Country of publishing house
US - UNITED STATES
Number of pages
37
Pages from-to
447-483
UT code for WoS article
000613669000017
EID of the result in the Scopus database
2-s2.0-85098657530