Composition of binary quadratic forms over number fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438469" target="_blank" >RIV/00216208:11320/21:10438469 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b63L6zySwr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b63L6zySwr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2021-0057" target="_blank" >10.1515/ms-2021-0057</a>
Alternative languages
Result language
angličtina
Original language name
Composition of binary quadratic forms over number fields
Original language description
In this article, the standard correspondence between the ideal class group of a quadratic number field and the equivalence classes of binary quadratic forms of given discriminant is generalized to any base number field of narrow class number one. The article contains an explicit description of the correspondence. In the case of totally negative discriminants, equivalent conditions are given for a binary quadratic form to be totally positive definite.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
71
Country of publishing house
SK - SLOVAKIA
Number of pages
22
Pages from-to
1339-1360
UT code for WoS article
000736982100002
EID of the result in the Scopus database
2-s2.0-85121769122