On quasigroups satisfying Stein's third law
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438470" target="_blank" >RIV/00216208:11320/21:10438470 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eX02Vw4ZwI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eX02Vw4ZwI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2021.112526" target="_blank" >10.1016/j.disc.2021.112526</a>
Alternative languages
Result language
angličtina
Original language name
On quasigroups satisfying Stein's third law
Original language description
A quasigroup (Q, .) of order v satisfies Stein's third law if (y . x) . (x . y) = x holds for all x, y is an element of Q. Let the quasigroup contain n idempotent elements. We construct such quasigroups with (v, n) is an element of {(20, 0), (24, 0), (28, 0), (36, 0)}, thus completing the existence spectrum of quasigroups satisfying Stein's third law with no idempotents. We also construct previously unknown quasigroups with (v,n) is an element of {(17, 11), (21, 3), (21, 7), (24, 4), (25, 7), (25, 19)} and provide an enumeration for all v <= 9. (C) 2021 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
344
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
112526
UT code for WoS article
000678502000015
EID of the result in the Scopus database
2-s2.0-85109827365