All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High nonassociativity in order 8 and an associative index estimate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400368" target="_blank" >RIV/00216208:11320/19:10400368 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9REwQm9~hE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9REwQm9~hE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jcd.21632" target="_blank" >10.1002/jcd.21632</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High nonassociativity in order 8 and an associative index estimate

  • Original language description

    Let Q be a quasigroup. Put a(Q) = vertical bar{(x, y, z) is an element of Q(3); x(yz)) = (xy)z}vertical bar and assume that vertical bar Q vertical bar = n. Let delta(L) and delta(R) be the number of left and right translations of Q that are fixed point free. Put delta(Q) = delta(L) + delta(R). Denote by i(Q) the number of idempotents of Q. It is shown that a(Q) &gt;= 2n - i(Q) + delta(Q). Call Q extremely nonassociative if a(Q) = 2n - i(Q). The paper reports what seems to be the first known example of such a quasigroup, with n = 8, a(Q) = 16, and i(Q) = 0. It also provides supporting theory for a search that verified a(Q) &gt;= 16 for all quasigroups of order 8.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Designs

  • ISSN

    1063-8539

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    205-228

  • UT code for WoS article

    000459631700001

  • EID of the result in the Scopus database

    2-s2.0-85058156681