The centre of a Steiner loop and the maxi-Pasch problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438471" target="_blank" >RIV/00216208:11320/21:10438471 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YPk4ffP9Pz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YPk4ffP9Pz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2020.035" target="_blank" >10.14712/1213-7243.2020.035</a>
Alternative languages
Result language
angličtina
Original language name
The centre of a Steiner loop and the maxi-Pasch problem
Original language description
A binary operation "." which satisfies the identities x . e = x, x . x = e, (x . y) . x = y and x . y = y . x is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order n with centre of order m and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
61
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
535-545
UT code for WoS article
000621666300010
EID of the result in the Scopus database
2-s2.0-85118796803