All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The centre of a Steiner loop and the maxi-Pasch problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438471" target="_blank" >RIV/00216208:11320/21:10438471 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YPk4ffP9Pz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YPk4ffP9Pz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2020.035" target="_blank" >10.14712/1213-7243.2020.035</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The centre of a Steiner loop and the maxi-Pasch problem

  • Original language description

    A binary operation &quot;.&quot; which satisfies the identities x . e = x, x . x = e, (x . y) . x = y and x . y = y . x is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order n with centre of order m and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    61

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    11

  • Pages from-to

    535-545

  • UT code for WoS article

    000621666300010

  • EID of the result in the Scopus database

    2-s2.0-85118796803