All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Legendrian products and twist spuns

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438575" target="_blank" >RIV/00216208:11320/21:10438575 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aON__zERhz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aON__zERhz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2140/agt.2021.21.665" target="_blank" >10.2140/agt.2021.21.665</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Legendrian products and twist spuns

  • Original language description

    The Legendrian product of two Legendrian knots, as defined by Lambert-Cole, is a Legendrian torus. We show that this Legendrian torus is a twist spun whenever one of the Legendrian knot components is sufficiently large. We then study examples of Legendrian products which are not Legendrian isotopic to twist spuns. In order to do this, we prove a few structural results on the bilinearised Legendrian contact homology and augmentation variety of a twist spun. In addition, we show that the threefold Bohr-Sommerfeld covers of the Clifford torus and Chekanov torus are not twist spuns.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebraic and Geometric Topology [online]

  • ISSN

    1472-2739

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    31

  • Pages from-to

    665-695

  • UT code for WoS article

    000645135900004

  • EID of the result in the Scopus database

    2-s2.0-85106682080