All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On non-geometric augmentations in high dimensions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474808" target="_blank" >RIV/00216208:11320/23:10474808 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cTCk8_NgzL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cTCk8_NgzL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10711-023-00842-7" target="_blank" >10.1007/s10711-023-00842-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On non-geometric augmentations in high dimensions

  • Original language description

    In this note we construct augmentations of Chekanov-Eliashberg algebras of certain high dimensional Legendrian submanifolds that are not induced by exact Lagrangian fillings. The obstructions to the existence of exact Lagrangian fillings that we use are Seidel&apos;s isomorphism and the injectivity of a certain algebraic map between the corresponding augmentation varieties proven by Gao and Rutherford. In addition, along the way we discuss the relation between augmentation varieties of Legendrian submanifolds and their spherical spuns (Proposition 4.3).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geometriae Dedicata

  • ISSN

    0046-5755

  • e-ISSN

    1572-9168

  • Volume of the periodical

    217

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    104

  • UT code for WoS article

    001145047500001

  • EID of the result in the Scopus database

    2-s2.0-85172375530