All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Edge-sum distinguishing labeling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438624" target="_blank" >RIV/00216208:11320/21:10438624 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Jo47.vjn1c" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Jo47.vjn1c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2021.010" target="_blank" >10.14712/1213-7243.2021.010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Edge-sum distinguishing labeling

  • Original language description

    We study edge-sum distinguishing labeling, a type of labeling recently introduced by Z. Tuza (2017) in context of labeling games. An ESD labeling of an $n$-vertex graph $G$ is an injective mapping of integers $1$ to $l$ to its vertices such that for every edge, the sum of the integers on its endpoints is unique. If $ l$ equals to $n$, we speak about a canonical ESD labeling. We focus primarily on structural properties of this labeling and show for several classes of graphs if they have or do not have a canonical ESD labeling. As an application we show some implications of these results for games based on ESD labeling. We also observe that ESD labeling is closely connected to the well-known notion of magic and antimagic labelings, to the Sidon sequences and to harmonious labelings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

    1213-7243

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    15

  • Pages from-to

    135-149

  • UT code for WoS article

    000818504900001

  • EID of the result in the Scopus database

    2-s2.0-85118599148