On super (a,1)-edge-antimagic total labelings of regular graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A10224310" target="_blank" >RIV/61989100:27240/10:10224310 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On super (a,1)-edge-antimagic total labelings of regular graphs
Original language description
A labeling of a graph is a mapping that carries some set of graph elements into numbers (usually positive integers). An (a,d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers 1,2?,p+q, so that the sum of the labels on the edges and the labels of their end vertices forms an arithmetic progression starting at a and having difference d. Such a labeling is called super if the p smallest possible labels appear atthe vertices. In this paper we prove that every even regular graph and every odd regular graph with a 1-factor are super (a,1)-edge-antimagic total. We also introduce some constructions of non-regular super (a,1)-edge-antimagic total graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
310
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
—
UT code for WoS article
000276731900002
EID of the result in the Scopus database
—