All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On super (a,1)-edge-antimagic total labelings of regular graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A10224310" target="_blank" >RIV/61989100:27240/10:10224310 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On super (a,1)-edge-antimagic total labelings of regular graphs

  • Original language description

    A labeling of a graph is a mapping that carries some set of graph elements into numbers (usually positive integers). An (a,d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers 1,2?,p+q, so that the sum of the labels on the edges and the labels of their end vertices forms an arithmetic progression starting at a and having difference d. Such a labeling is called super if the p smallest possible labels appear atthe vertices. In this paper we prove that every even regular graph and every odd regular graph with a 1-factor are super (a,1)-edge-antimagic total. We also introduce some constructions of non-regular super (a,1)-edge-antimagic total graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    310

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

  • UT code for WoS article

    000276731900002

  • EID of the result in the Scopus database