All Graphs Have Antimagic Total Labelings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43896948" target="_blank" >RIV/49777513:23520/11:43896948 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.endm.2011.10.008" target="_blank" >http://dx.doi.org/10.1016/j.endm.2011.10.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2011.10.008" target="_blank" >10.1016/j.endm.2011.10.008</a>
Alternative languages
Result language
angličtina
Original language name
All Graphs Have Antimagic Total Labelings
Original language description
In this paper we prove that all graphs have antimagic total labelings. We also prove that all graphs have super antimagic total labelings and repus antimagic total labelings. Furthermore, we show that some graphs have super (c, d)-antimagic total labelings and repus (c, d)-antimagic total labelings, that is, labelings that use the p smallest labels (resp. p largest labels) on vertices and, moreover, the vertex weights form arithmetic progression.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
112
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
645-650
UT code for WoS article
—
EID of the result in the Scopus database
—