All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph isomorphism restricted by lists

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439058" target="_blank" >RIV/00216208:11320/21:10439058 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/21:00347829

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mdXjUsDDDo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mdXjUsDDDo</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2021.01.027" target="_blank" >10.1016/j.tcs.2021.01.027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph isomorphism restricted by lists

  • Original language description

    The complexity of graph isomorphism (GRAPHISO) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (LISTISO) is NP-complete: for each u is an element of V(G), we are given a list L(u) subset of V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI-completeness of a class of graphs implies NP-completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored graphs with sizes of color classes bounded by 8 with all lists of size at most 3. (C) 2021 The Author(s). Published by Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Volume of the periodical

    860

  • Issue of the periodical within the volume

    March 2021

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    51-71

  • UT code for WoS article

    000620376400004

  • EID of the result in the Scopus database

    2-s2.0-85100699456