All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph Isomorphism Restricted by Lists

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00343649" target="_blank" >RIV/68407700:21240/20:00343649 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-60440-0_9" target="_blank" >https://doi.org/10.1007/978-3-030-60440-0_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-60440-0_9" target="_blank" >10.1007/978-3-030-60440-0_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph Isomorphism Restricted by Lists

  • Original language description

    The complexity of graph isomorphism (GraphIso) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso) is NP-complete: for each uelement V(G), we are given a list L(u) ? V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI-completeness of a class of graphs implies NP-completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored graphs with sizes of color classes bounded by 8.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected Papers

  • ISBN

    978-3-030-60439-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    106-118

  • Publisher name

    Springer-Verlag

  • Place of publication

    Berlin

  • Event location

    Leeds

  • Event date

    Jun 24, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article