All-Oxide p-n Junction Thermoelectric Generator Based on SnOx and ZnO Thin Films
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439765" target="_blank" >RIV/00216208:11320/21:10439765 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I6hyaD4FLV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I6hyaD4FLV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.1c09748" target="_blank" >10.1021/acsami.1c09748</a>
Alternative languages
Result language
angličtina
Original language name
All-Oxide p-n Junction Thermoelectric Generator Based on SnOx and ZnO Thin Films
Original language description
Achieving thermoelectric devices with high performance based on low-cost and nontoxic materials is extremely challenging. Moreover, as we move toward an Internet-of-Things society, a miniaturized local power source such as a thermoelectric generator (TEG) is desired to power increasing numbers of wireless sensors. Therefore, in this work, an all-oxide p-n junction TEG composed of low-cost, abundant, and nontoxic materials, such as n-type ZnO and p-type SnOx thin films, deposited on borosilicate glass substrate is proposed. A type II heterojunction between SnOx and ZnO films was predicted by density functional theory (DFT) calculations and confirmed experimentally by X-ray photoelectron spectroscopy (XPS). Moreover, scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDS) show a sharp interface between the SnOx and ZnO layers, confirming the high quality of the p-n junction even after annealing at 523 K. ZnO and SnOx thin films exhibit Seebeck coefficients (alpha) of similar to 121 and similar to 258 mu V/K, respectively, at 298 K, resulting in power factors (PF) of 180 mu W/m K-2 (for ZnO) and 37 mu W/m K-2 (for SnOx). Moreover, the thermal conductivities of ZnO and SnOx films are 8.7 and 1.24 W/m K, respectively, at 298 K, with no significant changes until 575 K. The four pairs all-oxide TEG generated a maximum power output (P-out) of 1.8 nW (approximate to 126 mu W/cm(2)) at a temperature difference of 160 K. The output voltage (V-out) and output current (I-ou(t)) at the maximum power output of the TEG are 124 mV and 0.0146 mu A, respectively. This work paves the way for achieving a high-performance TEG device based on oxide thin films.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LM2018116" target="_blank" >LM2018116: Surface Physics Laboratory - Materials Science Beamline</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Applied Materials & Interfaces
ISSN
1944-8244
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
29
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
35187-35196
UT code for WoS article
000679917500141
EID of the result in the Scopus database
2-s2.0-85111184367