Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439869" target="_blank" >RIV/00216208:11320/21:10439869 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7BTMuTBDa9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7BTMuTBDa9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2021.138454" target="_blank" >10.1016/j.electacta.2021.138454</a>
Alternative languages
Result language
angličtina
Original language name
Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells
Original language description
Alloying platinum is an approach to increase the oxygen reduction reaction (ORR) activity and at the same time reduce the amount of precious platinum catalyst in proton exchange membrane fuel cells (PEMFC). In this work the cathode activity of thin films of rare earth metals (REM) alloys, Pt 3 Y, Pt 5 Gd and Pt 5 Tb, produced by sputter deposition onto gas diffusion layers, are evaluated in a fuel cell by means of polarization curves in O 2 /H 2 , and cyclic- and CO-stripping voltammetry in N 2 /5% H 2 . Prior to evaluation, the model electrodes were acid-treated to obtain a Pt skin covering the PtREM alloy bulk, as was revealed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The core shell alloys of Pt 3 Y and Pt 5 Gd catalysts show a specific activity enhancement at 0.9 V of 2.5 times compared to pure Pt. The slightly lower enhancement factor of 2.0 for Pt 5 Tb is concluded to be due to leaching of the REM, that resulted in a thicker, and subsequently less strained, Pt overlayer. The high activity, combined with the minor changes in surface composition, achieved in the fuel cell environment shows that PtREM core shell catalysts are promising for the cathode reaction in PEMFC. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LM2018116" target="_blank" >LM2018116: Surface Physics Laboratory - Materials Science Beamline</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrochimica Acta
ISSN
0013-4686
e-ISSN
—
Volume of the periodical
387
Issue of the periodical within the volume
Aug
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
138454
UT code for WoS article
000691562600008
EID of the result in the Scopus database
2-s2.0-85105823072