All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439869" target="_blank" >RIV/00216208:11320/21:10439869 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7BTMuTBDa9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7BTMuTBDa9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.electacta.2021.138454" target="_blank" >10.1016/j.electacta.2021.138454</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells

  • Original language description

    Alloying platinum is an approach to increase the oxygen reduction reaction (ORR) activity and at the same time reduce the amount of precious platinum catalyst in proton exchange membrane fuel cells (PEMFC). In this work the cathode activity of thin films of rare earth metals (REM) alloys, Pt 3 Y, Pt 5 Gd and Pt 5 Tb, produced by sputter deposition onto gas diffusion layers, are evaluated in a fuel cell by means of polarization curves in O 2 /H 2 , and cyclic- and CO-stripping voltammetry in N 2 /5% H 2 . Prior to evaluation, the model electrodes were acid-treated to obtain a Pt skin covering the PtREM alloy bulk, as was revealed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The core shell alloys of Pt 3 Y and Pt 5 Gd catalysts show a specific activity enhancement at 0.9 V of 2.5 times compared to pure Pt. The slightly lower enhancement factor of 2.0 for Pt 5 Tb is concluded to be due to leaching of the REM, that resulted in a thicker, and subsequently less strained, Pt overlayer. The high activity, combined with the minor changes in surface composition, achieved in the fuel cell environment shows that PtREM core shell catalysts are promising for the cathode reaction in PEMFC. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2018116" target="_blank" >LM2018116: Surface Physics Laboratory - Materials Science Beamline</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electrochimica Acta

  • ISSN

    0013-4686

  • e-ISSN

  • Volume of the periodical

    387

  • Issue of the periodical within the volume

    Aug

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    138454

  • UT code for WoS article

    000691562600008

  • EID of the result in the Scopus database

    2-s2.0-85105823072