An anatomically constrained model of V1 simple cells predicts the coexistence of push-pull and broad inhibition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440127" target="_blank" >RIV/00216208:11320/21:10440127 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CGqevv7x3n" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CGqevv7x3n</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1523/JNEUROSCI.0928-20.2021" target="_blank" >10.1523/JNEUROSCI.0928-20.2021</a>
Alternative languages
Result language
angličtina
Original language name
An anatomically constrained model of V1 simple cells predicts the coexistence of push-pull and broad inhibition
Original language description
The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30103 - Neurosciences (including psychophysiology)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Neuroscience
ISSN
0270-6474
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
37
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
7797-7812
UT code for WoS article
000758583500001
EID of the result in the Scopus database
2-s2.0-85115276404