All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Discovering Dialogue Slots with Weak Supervision

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440539" target="_blank" >RIV/00216208:11320/21:10440539 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2021.acl-long.189" target="_blank" >https://aclanthology.org/2021.acl-long.189</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2021.acl-long.189" target="_blank" >10.18653/v1/2021.acl-long.189</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Discovering Dialogue Slots with Weak Supervision

  • Original language description

    Task-oriented dialogue systems typically require manual annotation of dialogue slots in training data, which is costly to obtain. We propose a method that eliminates this requirement: We use weak supervision from existing linguistic annotation models to identify potential slot candidates, then automatically identify domain-relevant slots by using clustering algorithms. Furthermore, we use the resulting slot annotation to train a neural-network-based tagger that is able to perform slot tagging with no human intervention. This tagger is trained solely on the outputs of our method and thus does not rely on any labeled data. Our model demonstrates state-of-the-art performance in slot tagging without labeled training data on four different dialogue domains. Moreover, we find that slot annotations discovered by our model significantly improve the performance of an end-to-end dialogue response generation model, compared to using no slot annotation at all.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing

  • ISBN

    978-1-954085-52-7

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    2430-2442

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    Online

  • Event date

    Aug 2, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article