Discovering Dialogue Slots with Weak Supervision
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440539" target="_blank" >RIV/00216208:11320/21:10440539 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.acl-long.189" target="_blank" >https://aclanthology.org/2021.acl-long.189</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.acl-long.189" target="_blank" >10.18653/v1/2021.acl-long.189</a>
Alternative languages
Result language
angličtina
Original language name
Discovering Dialogue Slots with Weak Supervision
Original language description
Task-oriented dialogue systems typically require manual annotation of dialogue slots in training data, which is costly to obtain. We propose a method that eliminates this requirement: We use weak supervision from existing linguistic annotation models to identify potential slot candidates, then automatically identify domain-relevant slots by using clustering algorithms. Furthermore, we use the resulting slot annotation to train a neural-network-based tagger that is able to perform slot tagging with no human intervention. This tagger is trained solely on the outputs of our method and thus does not rely on any labeled data. Our model demonstrates state-of-the-art performance in slot tagging without labeled training data on four different dialogue domains. Moreover, we find that slot annotations discovered by our model significantly improve the performance of an end-to-end dialogue response generation model, compared to using no slot annotation at all.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
ISBN
978-1-954085-52-7
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
2430-2442
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Online
Event date
Aug 2, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—