All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AC8AF63B3" target="_blank" >RIV/00216208:11320/22:C8AF63B3 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2022.lrec-1.780" target="_blank" >https://aclanthology.org/2022.lrec-1.780</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis

  • Original language description

    Social media data such as Twitter messages (“tweets”) pose a particular challenge to NLP systems because of their short, noisy, and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched training data for good performance. To date, there is no complete training corpus for both NER and syntactic analysis (e.g., part of speech tagging, dependency parsing) of tweets. While there are some publicly available annotated NLP datasets of tweets, they are only designed for individual tasks. In this study, we aim to create Tweebank-NER, an English NER corpus based on Tweebank V2 (TB2), train state-of-the-art (SOTA) Tweet NLP models on TB2, and release an NLP pipeline called Twitter-Stanza. We annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our annotations. We train the Stanza pipeline on TB2 and compare with alternative NLP frameworks (e.g., FLAIR, spaCy) and transformer-based models. The Stanza tokenizer and lemmatizer achieve SOTA performance on TB2, while the Stanza NER tagger, part-of-speech (POS) tagger, and dependency parser achieve competitive performance against non-transformer models. The transformer-based models establish a strong baseline in Tweebank-NER and achieve the new SOTA performance in POS tagging and dependency parsing on TB2. We release the dataset and make both the Stanza pipeline and BERTweet-based models available “off-the-shelf” for use in future Tweet NLP research. Our source code, data, and pre-trained models are available at: https://github.com/social-machines/TweebankNLP.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Thirteenth Language Resources and Evaluation Conference

  • ISBN

    979-10-95546-72-6

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    7199-7208

  • Publisher name

    European Language Resources Association

  • Place of publication

  • Event location

    Marseille, France

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article