All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Introducing Orthogonal Constraint in Structural Probes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440558" target="_blank" >RIV/00216208:11320/21:10440558 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2021.acl-long.36.pdf" target="_blank" >https://aclanthology.org/2021.acl-long.36.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2021.acl-long.36" target="_blank" >10.18653/v1/2021.acl-long.36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Introducing Orthogonal Constraint in Structural Probes

  • Original language description

    With the recent success of pre-trained models in NLP, a significant focus was put on interpreting their representations. One of the most prominent approaches is structural probing (Hewitt and Manning, 2019), where a linear projection of word embeddings is performed in order to approximate the topology of dependency structures. In this work, we introduce a new type of structural probing, where the linear projection is decomposed into 1. iso-morphic space rotation; 2. linear scaling that identifies and scales the most relevant dimensions. In addition to syntactic dependency, we evaluate our method on two novel tasks (lexical hypernymy and position in a sentence). We jointly train the probes for multiple tasks and experimentally show that lexical and syntactic information is separated in the representations. Moreover, the orthogonal constraint makes the Structural Probes less vulnerable to memorization.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-02196S" target="_blank" >GA18-02196S: Linguistic Structure Representation in Neural Networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing

  • ISBN

    978-1-954085-52-7

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    428-442

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    Online

  • Event date

    Aug 2, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article