Introducing Orthogonal Constraint in Structural Probes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440558" target="_blank" >RIV/00216208:11320/21:10440558 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.acl-long.36.pdf" target="_blank" >https://aclanthology.org/2021.acl-long.36.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.acl-long.36" target="_blank" >10.18653/v1/2021.acl-long.36</a>
Alternative languages
Result language
angličtina
Original language name
Introducing Orthogonal Constraint in Structural Probes
Original language description
With the recent success of pre-trained models in NLP, a significant focus was put on interpreting their representations. One of the most prominent approaches is structural probing (Hewitt and Manning, 2019), where a linear projection of word embeddings is performed in order to approximate the topology of dependency structures. In this work, we introduce a new type of structural probing, where the linear projection is decomposed into 1. iso-morphic space rotation; 2. linear scaling that identifies and scales the most relevant dimensions. In addition to syntactic dependency, we evaluate our method on two novel tasks (lexical hypernymy and position in a sentence). We jointly train the probes for multiple tasks and experimentally show that lexical and syntactic information is separated in the representations. Moreover, the orthogonal constraint makes the Structural Probes less vulnerable to memorization.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-02196S" target="_blank" >GA18-02196S: Linguistic Structure Representation in Neural Networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
ISBN
978-1-954085-52-7
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
428-442
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Online
Event date
Aug 2, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—