All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synthesizing Training Data for Handwritten Music Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440561" target="_blank" >RIV/00216208:11320/21:10440561 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-86334-0.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-86334-0.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86334-0_41" target="_blank" >10.1007/978-3-030-86334-0_41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synthesizing Training Data for Handwritten Music Recognition

  • Original language description

    Handwritten music recognition is a challenging task that could be of great use if mastered, e.g., to improve the accessibility of archival manuscripts or to ease music composition. Many modern machine learning techniques, however, cannot be easily applied to this task because of the limited availability of high-quality training data. Annotating such data manually is expensive and thus not feasible at the necessary scale. This problem has already been tackled in other fields by training on automatically generated synthetic data. We bring this approach to handwritten music recognition and present a method to generate synthetic handwritten music images (limited to monophonic scores) and show that training on such data leads to state-of-the-art results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Document Analysis and Recognition -- ICDAR 2021

  • ISBN

    978-3-030-86333-3

  • ISSN

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    626-641

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham, Switzerland

  • Event location

    Lausanne, Switzerland

  • Event date

    Sep 5, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article