Improving Handwritten Cyrillic OCR by Font-based Synthetic Text Generator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969586" target="_blank" >RIV/49777513:23520/23:43969586 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-50320-7_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-50320-7_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-50320-7_8" target="_blank" >10.1007/978-3-031-50320-7_8</a>
Alternative languages
Result language
angličtina
Original language name
Improving Handwritten Cyrillic OCR by Font-based Synthetic Text Generator
Original language description
In this paper, we propose a straight-forward and effective Font-based Synthetic Text Generator (FbSTG) to alleviate the need for annotated data required for not just Cyrillic handwritten text recognition. Unlike standard GAN-based methods, the FbSTG does not have to be trained to learn new characters and styles; all it needs is the fonts, the text, and sampled page backgrounds. In order to show the benefits of the newly proposed method, we train and test two different OCR systems (Tesseract, and TrOCR) on the Handwritten Kazakh and Russian dataset (HKR) both with and without synthetic data. Besides, we evaluate both systems' performance on a private NKVD dataset containing historical documents from Ukraine with a high amount of out-of-vocabulary (OoV) words representing an extremely challenging task for current state-of-the-art methods. We decreased the CER and WER significantly by adding the synthetic data with the TrOCR-Base-384 model on both datasets. More precisely, we reduced the relative error in terms of CER / WER on (i) HKR-Test1 with OoV samples by around 20% / 10%, and (ii) NKVD dataset by 24% CER and 8% WER. The FbSTG code is available at: https://github.com/mhlzcu/doc_gen.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-031-50319-1
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
14
Pages from-to
102-115
Publisher name
Springer
Place of publication
Cham
Event location
Prague, Czech Republic
Event date
Sep 3, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—