All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finetuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149378" target="_blank" >RIV/00216305:26230/23:PU149378 - isvavai.cz</a>

  • Result on the web

    <a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-41685-9_17" target="_blank" >10.1007/978-3-031-41685-9_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finetuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition

  • Original language description

    In many machine learning tasks, a large general dataset and a small specialized dataset are available. In such situations, various domain adaptation methods can be used to adapt a general model to the target dataset. We show that in the case of neural networks trained for handwriting recognition using CTC, simple finetuning with data augmentation works surprisingly well in such scenarios and that it is resistant to overfitting even for very small target domain datasets. We evaluated the behavior of finetuning with respect to augmentation, training data size, and quality of the pre-trained network, both in writer-dependent and writer-independent settings. On a large real-world dataset, finetuning provided an average relative CER improvement of 25 % with 16 text lines for new writers and 50 % for 256 text lines.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Document Analysis and Recognition - ICDAR 2023

  • ISBN

    978-3-031-41684-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    269-286

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    San José

  • Event location

    San José, California, USA

  • Event date

    Aug 21, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article