Shades of BLEU, Flavours of Success: The Case of MultiWOZ
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440567" target="_blank" >RIV/00216208:11320/21:10440567 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.gem-1.4/" target="_blank" >https://aclanthology.org/2021.gem-1.4/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.gem-1.4" target="_blank" >10.18653/v1/2021.gem-1.4</a>
Alternative languages
Result language
angličtina
Original language name
Shades of BLEU, Flavours of Success: The Case of MultiWOZ
Original language description
The MultiWOZ dataset (Budzianowski et al.,2018) is frequently used for benchmarking context-to-response abilities of task-oriented dialogue systems. In this work, we identify inconsistencies in data preprocessing and reporting of three corpus-based metrics used on this dataset, i.e., BLEU score and Inform & Success rates. We point out a few problems of the MultiWOZ benchmark such as unsatisfactory preprocessing, insufficient or under-specified evaluation metrics, or rigid database. We re-evaluate 7 end-to-end and 6 policy optimization models in as-fair-as-possible setups, and we show that their reported scores cannot be directly compared. To facilitate comparison of future systems, we release our stand-alone standardized evaluation scripts. We also give basic recommendations for corpus-based benchmarking in future works.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
ISBN
978-1-954085-67-1
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
34-46
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Online
Event date
Aug 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—