All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Further Steps towards a Standard Testbed for Optical Music Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335467" target="_blank" >RIV/00216208:11320/16:10335467 - isvavai.cz</a>

  • Result on the web

    <a href="https://18798-presscdn-pagely.netdna-ssl.com/ismir2016/wp-content/uploads/sites/2294/2016/07/289_Paper.pdf" target="_blank" >https://18798-presscdn-pagely.netdna-ssl.com/ismir2016/wp-content/uploads/sites/2294/2016/07/289_Paper.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Further Steps towards a Standard Testbed for Optical Music Recognition

  • Original language description

    Evaluating Optical Music Recognition (OMR) is notoriously difficult and automated end-to-end OMR evaluation metrics are not available to guide development. In "Towards a Standard Testbed for Optical Music Recognition: Definitions, Metrics, and Page Images", Byrd and Simonsen recently stress that a benchmarking standard is needed in the OMR community, both with regards to data and evaluation metrics. We build on their analysis and definitions and present a prototype of an OMR benchmark. We do not, however, presume to present a complete solution to the complex problem of OMR benchmarking. Our contributions are: (a) an attempt to define a multi- level OMR benchmark dataset and a practical prototype implementation for both printed and handwritten scores, (b) a corpus-based methodology for assessing automated evaluation metrics, and an underlying corpus of over 1000 qualified relative cost-to-correct judgments. We then assess several straightforward automated MusicXML evaluation metrics against this corpus

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th International Society for Music Information Retrieval Conference

  • ISBN

    978-0-692-75506-8

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    157-163

  • Publisher name

    New York University

  • Place of publication

    New York, USA

  • Event location

    New York, USA

  • Event date

    Aug 7, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article