All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Practical End-to-End Optical Music Recognition for Pianoform Music

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492884" target="_blank" >RIV/00216208:11320/24:10492884 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-70552-6_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70552-6_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70552-6_4" target="_blank" >10.1007/978-3-031-70552-6_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Practical End-to-End Optical Music Recognition for Pianoform Music

  • Original language description

    The majority of recent progress in Optical Music Recognition (OMR) has been achieved with Deep Learning methods, especially models following the end-to-end paradigm, reading input images and producing a linear sequence of tokens. Unfortunately, many music scores, especially piano music, cannot be easily converted to a linear sequence. This has led OMR researchers to use custom linearized encodings, instead of broadly accepted structured formats for music notation. Their diversity makes it difficult to compare the performance of OMR systems directly. To bring recent OMR model progress closer to useful results: (a) We define a sequential format called Linearized MusicXML, allowing to train an end-to-end model directly and maintaining close cohesion and compatibility with the industry-standard MusicXML format. (b) We create a dev and test set for benchmarking typeset OMR with MusicXML ground truth based on the OpenScore Lieder corpus. They contain 1,438 and 1,493 pianoform systems, each with an image fro

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/DH23P03OVV008" target="_blank" >DH23P03OVV008: OmniOMR - optical music recognition using machine learning for digital libraries</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Document Analysis and Recognition -- ICDAR 2024

  • ISBN

    978-3-031-70551-9

  • ISSN

  • e-ISSN

  • Number of pages

    19

  • Pages from-to

    55-73

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham, Switzerland

  • Event location

    Athîna, Greece

  • Event date

    Aug 30, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article