The Dirichlet problem on compact convex sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441182" target="_blank" >RIV/00216208:11320/21:10441182 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/21:00357013
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xLjKxFX0Pl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xLjKxFX0Pl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2021.109251" target="_blank" >10.1016/j.jfa.2021.109251</a>
Alternative languages
Result language
angličtina
Original language name
The Dirichlet problem on compact convex sets
Original language description
Let X be a compact convex set with the set ext X of extreme points being Lindelof and f: ext X -> F be a bounded Baire mapping with values in a Frechet space F. We present a necessary and sufficient condition for f to be extended to a strongly affine Baire function on the whole set X. (C) 2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
281
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
109251
UT code for WoS article
000709430900001
EID of the result in the Scopus database
2-s2.0-85116538399