All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

There is no compact metrizable space containing all continua as unique components

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441222" target="_blank" >RIV/00216208:11320/21:10441222 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=27c6e2Vz6c" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=27c6e2Vz6c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2021.107742" target="_blank" >10.1016/j.topol.2021.107742</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    There is no compact metrizable space containing all continua as unique components

  • Original language description

    We answer a question of Piotr Minc by proving that there is no compact metrizable space whose set of components contains a unique topological copy of every metrizable compactification of a ray (i.e. a half-open interval) with an arc (i.e. closed bounded interval) as the remainder. To this end we use the concept of Borel reductions coming from Invariant descriptive set theory. It follows as a corollary that there is no compact metrizable space such that every continuum is homeomorphic to exactly one component of this space. (c) 2021 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Volume of the periodical

    299

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

    107742

  • UT code for WoS article

    000678418100004

  • EID of the result in the Scopus database

    2-s2.0-85111062142