There is no compact metrizable space containing all continua as unique components
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441222" target="_blank" >RIV/00216208:11320/21:10441222 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=27c6e2Vz6c" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=27c6e2Vz6c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2021.107742" target="_blank" >10.1016/j.topol.2021.107742</a>
Alternative languages
Result language
angličtina
Original language name
There is no compact metrizable space containing all continua as unique components
Original language description
We answer a question of Piotr Minc by proving that there is no compact metrizable space whose set of components contains a unique topological copy of every metrizable compactification of a ray (i.e. a half-open interval) with an arc (i.e. closed bounded interval) as the remainder. To this end we use the concept of Borel reductions coming from Invariant descriptive set theory. It follows as a corollary that there is no compact metrizable space such that every continuum is homeomorphic to exactly one component of this space. (c) 2021 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
299
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
107742
UT code for WoS article
000678418100004
EID of the result in the Scopus database
2-s2.0-85111062142