Bilinear Fourier multipliers and the rate of decay of their derivatives
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441240" target="_blank" >RIV/00216208:11320/21:10441240 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SxnG0pPL0q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SxnG0pPL0q</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jat.2020.105485" target="_blank" >10.1016/j.jat.2020.105485</a>
Alternative languages
Result language
angličtina
Original language name
Bilinear Fourier multipliers and the rate of decay of their derivatives
Original language description
We investigate two types of boundedness criteria for bilinear Fourier multiplier operators with symbols with bounded partial derivatives of all (or sufficiently many) orders. Theorems of the first type explicitly prescribe only a certain rate of decay of the symbol itself while theorems of the second type require, in addition, the same rate of decay of all derivatives of the symbol. We show that even though these two types of bilinear multiplier theorems are closely related, there are some fundamental differences between them which arise in limiting cases. Also, since theorems of the latter type have so far been studied mainly in connection with the more general class of bilinear pseudodifferential operators, we revisit them in the special case of bilinear Fourier multipliers, providing also some improvements of the existing results in this setting. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Approximation Theory
ISSN
0021-9045
e-ISSN
—
Volume of the periodical
261
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
105485
UT code for WoS article
000603475000001
EID of the result in the Scopus database
2-s2.0-85092228092