Orthogonality Principle for Bilinear Littlewood-Paley Decompositions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283442" target="_blank" >RIV/00216208:11320/14:10283442 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00041-014-9350-5" target="_blank" >http://dx.doi.org/10.1007/s00041-014-9350-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00041-014-9350-5" target="_blank" >10.1007/s00041-014-9350-5</a>
Alternative languages
Result language
angličtina
Original language name
Orthogonality Principle for Bilinear Littlewood-Paley Decompositions
Original language description
We explore Littlewood-Paley like decompositions of bilinear Fourier multipliers. Grafakos and Li (Am. J. Math. 128(1):91-119 2006) showed that a bilinear symbol supported in an angle in the positive quadrant is bounded from into if its restrictions to dyadic annuli are bounded bilinear multipliers in the local case , , . We show that this range of indices is sharp and also discuss similar results for multipliers supported near axis and negative diagonal.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Fourier Analysis and Applications
ISSN
1069-5869
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
1171-1178
UT code for WoS article
000345295400002
EID of the result in the Scopus database
—