All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Embeddings of homogeneous Sobolev spaces on the entire space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441248" target="_blank" >RIV/00216208:11320/21:10441248 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lJJYWdMOE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lJJYWdMOE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/prm.2020.14" target="_blank" >10.1017/prm.2020.14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Embeddings of homogeneous Sobolev spaces on the entire space

  • Original language description

    We completely characterize the validity of the inequality parallel to u parallel to(Y(Rn)) &lt;= C parallel to del(m)u parallel to(X(Rn)), where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Royal Society of Edinburgh - Proceedings A

  • ISSN

    0308-2105

  • e-ISSN

  • Volume of the periodical

    151

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    33

  • Pages from-to

    296-328

  • UT code for WoS article

    000609102100015

  • EID of the result in the Scopus database

    2-s2.0-85082530558