Embeddings of homogeneous Sobolev spaces on the entire space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441248" target="_blank" >RIV/00216208:11320/21:10441248 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lJJYWdMOE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lJJYWdMOE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/prm.2020.14" target="_blank" >10.1017/prm.2020.14</a>
Alternative languages
Result language
angličtina
Original language name
Embeddings of homogeneous Sobolev spaces on the entire space
Original language description
We completely characterize the validity of the inequality parallel to u parallel to(Y(Rn)) <= C parallel to del(m)u parallel to(X(Rn)), where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Royal Society of Edinburgh - Proceedings A
ISSN
0308-2105
e-ISSN
—
Volume of the periodical
151
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
296-328
UT code for WoS article
000609102100015
EID of the result in the Scopus database
2-s2.0-85082530558