All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Sampling of Dependency Structure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10442260" target="_blank" >RIV/00216208:11320/21:10442260 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Sampling of Dependency Structure

  • Original language description

    Probabilistic distributions over spanning trees in directed graphs are a fundamental model of dependency structure in natural language processing, syntactic dependency trees. In NLP, dependency trees often have an additional root constraint: only one edge may emanate from the root. However, no sampling algorithm has been presented in the literature to account for this additional constraint. In this paper, we adapt two spanning tree sampling algorithms to faithfully sample dependency trees from a graph subject to the root constraint. Wilson (1996(&apos;s sampling algorithm has a running time of O(H) where H is the mean hitting time of the graph. Colbourn (1996)&apos;s sampling algorithm has a running time of O(N^3), which is often greater than the mean hitting time of a directed graph. Additionally, we build upon Colbourn&apos;s algorithm and present a novel extension that can sample K trees without replacement in O(K N^3 + K^2 N) time. To the best of our knowledge, no algorithm has been given for sampling spanning trees without replacement from a directed graph.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

  • ISBN

    978-1-955917-09-4

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    10558-10569

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg

  • Event location

    Punta Cana

  • Event date

    Nov 7, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article