All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Dependency Tree Sampling Without Replacement

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ACWH29H64" target="_blank" >RIV/00216208:11320/25:CWH29H64 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197849878&doi=10.18653%2fv1%2f2024.findings-naacl.47&partnerID=40&md5=ecf7a953259f8c99119c7b13054199c7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197849878&doi=10.18653%2fv1%2f2024.findings-naacl.47&partnerID=40&md5=ecf7a953259f8c99119c7b13054199c7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2024.findings-naacl.47" target="_blank" >10.18653/v1/2024.findings-naacl.47</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Dependency Tree Sampling Without Replacement

  • Original language description

    In the context of computational models of dependency syntax, most dependency treebanks have the restriction that any valid dependency tree must have exactly one edge coming out of the root node in addition to respecting the spanning tree constraints. Many algorithms for dependency tree sampling were recently proposed, both for sampling with and without replacement. In this paper we propose a new algorithm called Wilson Reject SWOR for the case of sampling without replacement by adapting the Wilson Reject algorithm originally created for sampling with replacement and combining it with a Trie data structure. Experimental results indicate the efficiency of our approach in the scenario of sampling without replacement from dependency graphs with random weights. © 2024 Association for Computational Linguistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Find. Assoc. Comput. Linguist.: NAACL - Findings

  • ISBN

    979-889176119-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    736-741

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

  • Event location

    Mexico City

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article