All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10451766" target="_blank" >RIV/00216208:11320/21:10451766 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rti~2WpfKr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rti~2WpfKr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10489-021-02402-6" target="_blank" >10.1007/s10489-021-02402-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm

  • Original language description

    Universum data that do not belong to any class of a classification problem can be exploited to utilize prior knowledge to improve generalization performance. In this paper, we design a novel parametric ν-support vector machine with universum data (UPar-ν-SVM). Unlabeled samples can be integrated into supervised learning by means of UPar-ν-SVM. We propose a fast method to solve the suggested problem of UPar-ν-SVM. The primal problem of UPar-ν-SVM, which is a nonconvex optimization problem, is transformed into an unconstrained optimization problem so that the objective function can be treated as a difference of two convex functions (DC). To solve this unconstrained problem, a boosted difference of convex functions algorithm (BDCA) based on a generalized Newton method is suggested (named DC-UPar-ν-SVM). We examined our approach on UCI benchmark data sets, NDC data sets, a handwritten digit recognition data set, and a landmine detection data set. The experimental results confirmed the effectiveness and superiority of the proposed method for solving classification problems in comparison with other methods. (C) 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50201 - Economic Theory

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Intelligence

  • ISSN

    0924-669X

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    2634-2654

  • UT code for WoS article

    000662820100004

  • EID of the result in the Scopus database

    2-s2.0-85108106202