Steady Compressible Navier-Stokes-Fourier Equations with Dirichlet Boundary Condition for the Temperature
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10438229" target="_blank" >RIV/00216208:11320/22:10438229 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N4FDa-sFFs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N4FDa-sFFs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-021-00655-2" target="_blank" >10.1007/s00021-021-00655-2</a>
Alternative languages
Result language
angličtina
Original language name
Steady Compressible Navier-Stokes-Fourier Equations with Dirichlet Boundary Condition for the Temperature
Original language description
Based on the recent result from Chaudhuri and Feireisl (Navier-Stokes-Fourier system with Dirichlet boundary conditions, 2021. arXiv:2106.05315) for the evolutionary compressible Navier-Stokes-Fourier equations we present the proof of existence of a weak solution for the steady system with Dirichlet boundary condition for the temperature without any restriction on the size of the data. The weak formulation of the equations for the temperature is based on the total energy balance and entropy inequality with compactly supported test functions and a steady version of the ballistic energy inequality which allows to obtain estimates of the temperature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
17
UT code for WoS article
000742355900001
EID of the result in the Scopus database
2-s2.0-85123001399