Fischer Decomposition of Massless Fields for Spin 3/2 in Dimension 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10439103" target="_blank" >RIV/00216208:11320/22:10439103 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_3Elz0oYmg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_3Elz0oYmg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-021-01187-8" target="_blank" >10.1007/s00006-021-01187-8</a>
Alternative languages
Result language
angličtina
Original language name
Fischer Decomposition of Massless Fields for Spin 3/2 in Dimension 4
Original language description
As an analogue of the massless field equations in Euclidean space, we consider the so-called generalized Cauchy-Riemann equations introduced by E. Stein and G. Weiss. In the spin 1/2 case these equations reduce to the Dirac equation for spin 1/2 fields, which was thoroughly and intensively studied in Clifford analysis. For general spin it was recently shown that, in dimension 4, homogenous solutions form irreducible Spin modules. The next step then is to describe the corresponding Fischer decomposition, i.e. an irreducible decomposition of the space of spinor fields, which is well-known for spin 1/2 and for spin 1. The main aim of the present paper is to describe, still in dimension 4, the Fischer decomposition for spin 3/2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11473S" target="_blank" >GA20-11473S: Symmetry and invariance in analysis, geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
1661-4909
Volume of the periodical
32
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
6
UT code for WoS article
000736719000001
EID of the result in the Scopus database
2-s2.0-85122085007