Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387119" target="_blank" >RIV/00216208:11320/18:10387119 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11785-017-0697-x" target="_blank" >https://doi.org/10.1007/s11785-017-0697-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11785-017-0697-x" target="_blank" >10.1007/s11785-017-0697-x</a>
Alternative languages
Result language
angličtina
Original language name
Fischer Decomposition for Massless Fields of Spin 1 in Dimension 4
Original language description
The massless field equations for lower integer and half-integer values of spin in Minkowski space are fundamental equations in mathematical physics. Their counterpart in Euclidean spacetime is a system of elliptic equations, which was already studied from the viewpoint of function theory in the framework of so-called Hodge systems for differential forms of various degrees. In dimension 4 it is possible to substitute spinor calculus for the usual tensor notation. In the present paper we concentrate on the case of the massless field equation for spin 1 in dimension 4, and we treat, in a spinor formalism, a fundamental concept of its function theory: the Fischer decomposition of polynomial spinor fields, for which we give simple and independent proofs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01171S" target="_blank" >GA17-01171S: Invariant differential operators and their applications in geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Analysis and Operator Theory
ISSN
1661-8254
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
439-456
UT code for WoS article
000423719900006
EID of the result in the Scopus database
2-s2.0-85021132221